

PROCESS ALLOWING IMMIGRATION, II: THE

CASE OF INFINITE OFFSPRING MEAN

by

A. D. Barbour Cambridge University

and

Anthony G. Pakes* Princeton University

DISTRIBUTION STRUCKERY

Distribution Unitedite

Approved for public

Technical Report No. 134, Series 2
Department of Statistics
Princeton University
December 1977

Research sponsored in part by a contract with the Office of Naval Research, No. N00014-75-C-0453, awarded to the Department of Statistics, Princeton University.

*On leave from the Dept. of Mathematics, Monash University, Clayton, Victoria, Australia.

ABSTRACT

This paper obtains some limit theorems for the simple branching process allowing immigration $\{X_n\}$ when the offspring mean is infinite. It is shown that there exists a function U such that $\{e^{-n}U(X_n)\}$ converges almost surely and if $s = \Sigma b_j \log^+ U(j) < --$, where $\{b_j\}$ is the immigration distribution, the limit is non-defective and non-degenerate but is infinite if s = --.

When s = -1 limit theorems are found for $\{U(X_n)\}$ which involve a slowly varying non-linear norming.

Key words: Bienaymé-Galton-Watson branching process, immigration, martingale convergence, limit theorems, regular variation.

1. INTRODUCTION

Let $\{X_n: n=0,1,\ldots\}$ denote a Bienaymé-Galton-Watson process with immigration, for which the offspring probability generating function, f, satisfies m=f'(1-)=- and $\{I_n: n=1,2,\ldots\}$, the number of immigrants into successive generations, are independent and identically distributed with probability generating function b satisfying b(0)<1. Suppose also that $X_0=0$.

This paper describes the behavior of X_n as n+- in terms of appropriate limit theorems. In §2 we show that for a certain increasing function U constructed as in [6], the sequence $\{e^{-n}U(X_n)\}$ converges almost surely and that the limit is non-defective if a certain condition on the immigration distribution obtains and is essentially infinite otherwise. It is pointed out that, in the former case, $\{X_n\}$ may be classified in terms of regularity and irregularity exactly as in the case of no immigration [6].

In §3 we consider the case where $Y_n = e^{-n}U(X_n) + -a.s.$ Limit theorems are obtained for Y_n which involve a non-linear norming by a slowly varying (SV) function. Theorem 2 involves no extra assumptions but has a rather strange appearance: neater versions are given in Corollaries 1-3 under conditions expressed in terms of $G(x) = 1 - b(\exp[-1/V(e^X)])$, where V is the functional inverse of U. These results are analogues of the families of limit theorems for the case m < -a which were presented in Part I [3], and some examples are given to show that the conditions in Corollaries 1-3 are not vacuous. Finally, it is shown that there is no sequence (c_n) of norming constants such that Y_n/c_n has a limit in distribution which is neither defective nor degenerate at the origin.

To complete the survey in Part I, it suffices to mention that a version of Theorem 1 was first proved in [2] under conditions on f ensuring that U could be chosen as a suitable power of log[†] and only convergence in law was established. The conditions of this result were substantially relaxed in [1] to allow U to be SV at infinity and strictly increasing. A restricted and more opaque version of Corollary 1 was proved in [2].

2. ALMOST SURE CONVERGENCE

Let f_n denote the n^{th} functional iterate of f and h_n the functional inverse of $-\log f_n(e^{-s})$. Let $p_n(s) = \prod_{m=1}^n b \left(\exp(-h_m(s)) \right)$ and $p(s) = \lim_{n \to \infty} p_n(s)$ for $0 < s < -\log q$ where q = f(q) < 1. Since $h_n(s) \downarrow 0$ $(n \leftrightarrow \infty)$ it is clear that either p(s) > 0 or $\equiv 0$. In the former case it is clear that $\{[\exp(-h_n(s)X_n)]/p_n(s)\}$ is a martingale and the martingale convergence theorem shows that for each a.s. $0 < s < -\log q$, $\exp(-h_n(s)X_n) \to W(s)$, say, and E(s) = p(s). The behavior of $\{X_n\}$ can be analyzed in precisely the same way in which that of the corresponding process without immigration was analyzed in [6]. In particular the classification of points in $(0, -\log q)$ as regular and irregular carries over to the present case and if $T = \sup\{s \mid 0 < s < -\log q$, $W(s) < 1\}$ it follows that T is non-defective and $P(T \ge s_p) = p(s_p)$, $P(T = s_p) = 0$ for every regular point s_p .

Finally, for the function U constructed in [6], the arguments used in this reference show that $e^{-n}U(X_n) \xrightarrow{a.s.} U(T^{-1})$. In the complementary case, when $p(s) \equiv 0$, the martingale convergence theorem shows that $\exp(-h_n(s)X_n) \xrightarrow{a.s.} 0$ for each $0 < s < -\log q$. To proceed

further we need the following details about U. It is shown in [6] that by starting with a fixed $s_0 \in (0, -\log q)$ it is possible to construct U so that it is continuous on $[0, \infty)$, identically zero on $[0, 1/(-\log q)]$, positive and strictly increasing to infinity on $[1/(-\log q), \infty)$ and satisfies the relations

$$U(1/h_n(s_0)) = e^n, U(1/h_n(s))/U(1/h_n(s_0)) = U(1/s)$$
 (1)

Choose a sequence $\{s_m: m=1,2,\ldots\}$ such that $-\log q > s_m + 0 \pmod{m+\infty}$. Let Ω_m be a subset of the basic probability space such that $P(\Omega_m) = 1$ and $h_n(s_m)X_n(\omega) + \infty \pmod{m+\infty}$. Thus on $\Omega' = \bigcap_{m \geq 1} \Omega_m$, $h_n(s_m)X_n(\omega) + \infty$ for each m and this implies that eventually $X_n(\omega) \geq 1/h_n(s_m)$ and hence, from (1), eventually $e^{-n}U(X_n(\omega)) \geq U(1/s_m)$ $(\omega \in \Omega')$.

Letting $n \leftrightarrow \infty$ and them $m \leftrightarrow \infty$, we obtain all except the final assertion of the following theorem.

Theorem 1. If p(s) > 0 then $e^{-n}U(X_n) \xrightarrow{a.s.} U(1/T)$ where T is defined above, and if p(s) = 0, $e^{-n}U(X_n) \xrightarrow{a.s.} -$. Furtheremore, p(s) > 0 iff

$$\sum_{j=1}^{n} b_{j} \log^{+} U(j) < \infty$$
 (2)

where {b_i} denotes the immigration distribution.

The last assertion follows from these observations. Since U is strictly increasing, the relations (1) can be solved to obtain an explicit expression

$$h_n(s) = 1/V(e^nU(s^{-1}))$$
 (3)

for h_n , and the proof of Lemma 2 in [1] needs, with one exception,

only trivial changes to show that (2) holds iff

$$\prod_{n=1}^{\infty} b\left(\exp\left(-1/V(e^nU(s^{-1}))\right)\right) > 0$$

where V is the functional inverse of U, whence the assertion in this case. The exception is that the proof given in [1] assumes that log U is SV: that this is so follows from

Lemma 1. If L is SV at infinity then so is L(U(·)).

<u>Proof.</u> By virtue of the uniform convergence theorem for SV functions [7] it suffices to show that for each $\lambda > 0$, $U(\lambda x)/U(x)$ is bounded away from zero and infinity for all sufficiently large x. It suffices to consider the case $1 \le \lambda < \infty$. The proof to be given parallels that of Lemma 2.3.3 in [6]. Choose $s_0 \in (0, -\log q)$ as in Construction 2.3.1 of [6], and set $D = [h(s_0), s_0]$. The functions $g_n(s) = h_{n+1}(s)/h_n(s)$ are continuous on D, and, from equations (2) and (3) of [6], it follows that

$$g_n(s) \ge g_{n+1}(s)$$
; $g_n(s) \to 0$ as $n \to \infty$: (4)

hence, by Dini's theorem, this convergence is uniform on D. Thus for all $n \ge n_0$, chosen large enough, and all $s \in D$, $\lambda/h_n(s) \le 1/h_{n+1}(s)$. For each sufficiently large x construct n and $s \in D$ so that $x^{-1} = h_n(s)$ (see Construction 2.3.1, [5]). It follows that

$$1 < U(\lambda x)/U(x) \le U(1/h_{n+1}(s))/U(1/h_n(s)) = e$$
,

and the lemma now follows.

3. THE CASE p(s) = 0

The description of the behavior of X_n in the case $p(s) \equiv 0$ is through distributional, rather than almost sure, limit theorems.

The first step in deriving them is to note that, from (3),

$$E\left(\exp\left(-h_n(t)X_n\right)\right) = p_n(t) = \prod_{m=1}^n b\left[\exp\left(-1/V\left(e^mU(t^{-1})\right)\right)\right].$$

Using integral test comparisons, as in [3], it is not difficult to show that

$$p_n(t) = \Delta_n(t) \exp \int_0^n \log b \left[\exp \left(-1/V \left(e^y U(t^{-1}) \right) \right) \right] dy$$

where $\Delta_n(t_n)+1$ if t_n+0+ as $n+\infty$. Denoting the integral by J_n and making the change of variable $e^X=e^YU(t^{-1})$, it follows that if $t=t_n+0+$ then

$$-J_n \sim J_n = \int_{\log U(1/t_n)}^{n+\log U(1/t_n)} G(x) dx$$
 (5)

where $G(x) = 1 - b \left(exp(-1/V(e^X)) \right)$. We are now in a position to approach the main limit theorem, by making a suitable choice of t_n , and by using the following version of Reuter's Lemma 1 in [1].

Lemma 2. Let U be constructed according to Construction 2.3.1 in

[6] and in addition suppose it is strictly increasing on $(1/(-\log q), \infty)$ Let y_n be positive, increasing and satisfy the properties

(a)
$$y_n(u)/y_n(v)+\infty$$
 $(n+\infty)$ if $u>v$ and $0, $v< d \le \infty$; and$

(b)
$$e^n y_n(u) \rightarrow \infty$$
 $(n \rightarrow \infty; c < u < d)$.

If, for a sequence of non-negative random variables {W_n} there is a continuous function a(·) such that

$$E\left[\exp\left(-W_{n}/V\left(e^{n}y_{n}(u)\right)\right)\right] \rightarrow a(u) \qquad (c < u < d; n+\infty)$$

then

$$P\left(e^{-n}U(W_n) \leq y_n(u)\right) + a(u).$$

<u>Proof.</u> Let $A_n = \{e^{-n}U(W_n) \le y_n(u)\} = \{W_n \le V(e^ny_n(u))\}$. Choose $u\varepsilon(c,d)$ and $c < u_1 < u < u_2 < d$. If $Y_n^{(i)} = \exp\{-W_n/V(e^ny_n(u_i))\}$ (i=1,2); then arguing as in [1] we obtain

$$EY_n^{(1)} - exp(-\lambda_n^{(1)}) \le P(A_n) \le (EY_n^{(2)}) exp \lambda_n^{(2)}$$

where $\lambda_n^{(i)} = V(e^n y_n(u))/V(e^n y_n(u_i))$ (i=1,2). If we can show that $\lambda_n^{(1)} + \infty$ and $\lambda_n^{(2)} + 0$, the assertion follows upon then letting $u_i + u$. We shall prove only that $\lambda_n^{(1)} + \infty$. It follows from (a) that for each t > 1

$$\lambda_{n}^{(1)} \ge V(te^{n}y_{n}(u_{1}))/V(e^{n}y_{n}(u_{1}))$$

for all sufficiently large n. Let m(n) be the integer part of $n + \log y_n(u_1)$. By (b) $m(n) \rightarrow \infty$ $(n \rightarrow \infty)$ and $e^{m(n)} \le e^n y_n(u_1) \le e^{m(n)+1}$ and hence, taking $t = e^2$,

 $\lambda_n^{(1)} \ge V(\exp\{m(n)+2\})/V\left(\exp\{m(n)+1\}\right) = h_{m(n)}(1/V(e))/h_{m(n)+1}(1/V(e)),$ where we have used (3). Hence, from (4), $\lim_{n \to \infty} \lambda_n^{(1)} = \infty$.

Now, for $x \ge 1$, let $\Lambda(x) = \exp \int_0^{\log x} \frac{n+\infty}{G(y)dy}$, which is SV at

infinity and strictly increasing. Furthermore, the ratio

$$\Lambda(x)/\Lambda(xe^n) = \exp\left\{-\int_1^{\log x} G(y)dy\right\}$$
$$= \exp\left(-\int_1^{e^n} G(\log(zx))dz/z\right)$$

increases with x on $(1,\infty)$ from m_n say, to unity, and since $p(t) \equiv 0$ iff $\int_0^\infty G(x) dx = \infty$, it follows that $m_n + 0$ $(n + \infty)$; moreover, for each fixed $x \geq 1$, $\Lambda(x)/\Lambda(xe^n)$ decreases to zero as $n + \infty$. Hence, for any 0 < u < 1 and all n sufficiently large, we may define $y_n(u) > 0$ uniquely in such a way that

$$\Lambda(y_n(u)) = u\Lambda(e^ny_n(u))$$
.

where it follows that y_n is increasing on (0,1), that $y_n(u)+\infty$ $(n+\infty)$ and that if 0 < v < u < 1,

$$\frac{y_n(u)}{y_n(v)} = \frac{\Lambda^{-1}\left(u\Lambda\left(e^ny_n(u)\right)\right)}{\Lambda^{-1}\left(v\Lambda\left(e^ny_n(v)\right)\right)} \ge \frac{\Lambda^{-1}\left(u\Lambda\left(e^ny_n(v)\right)\right)}{\Lambda^{-1}\left(v\Lambda\left(e^ny_n(v)\right)\right)} \longrightarrow$$

as $n+\infty$, since Λ is SV at infinity. Choosing $U(t_n^{-1})=y_n(u)$ in (5) we see that $j_n=u$ and hence $\mathbb{E}\Big[\exp\Big(-X_n/V\big(e^ny_n(u)\big)\Big]\Big]+u$ (0<u<1), and that the other conditions of Lemma 2 are satisfied. This completes the proof of the following theorem.

Thereom 2. If
$$p(s) \equiv 0$$
, then
$$\Lambda(e^{-n}U(X_n))/\Lambda(U(X_n)) \stackrel{d}{\rightarrow} W$$

where W is uniformly distributed on [0,1].

Analogues of Theorem 2 also obtain when m < 1 and 1 < m < m; see [3].

The proof of Theorem 2 has been carried out under the condition $X_0 = 0$. However

$$P_{i}^{(n)}(t) = E\left[\exp(-x_{n}h_{n}(t))|x_{0}=i\right]$$

$$= \left[f_{n}\left(\exp(-h_{n}(t))\right]^{i}P_{0}^{(n)}(t)$$

$$= e^{-it}P_{0}^{(n)}(t),$$

and since t was chosen to converge to zero, we see that Theorem 2 is valid for any initial state. Furthermore, $\Lambda(e^{-n}U(\cdot))/\Lambda(U(\cdot))$ is strictly increasing and continuous and hence the weakly convergent sequence in Theorem 2 is a Markov chain and, in addition, is mixing [5, Theorem 2]. Thus [4] we cannot have convergence in probability

in Theorem 2.

The quantity converging in law in Theorem 2 has a rather odd appearance since $U(X_n)$ is present in both numerator and denominator. Tidier versions can be obtained by making estimates of

$$\Lambda(e^{-n}U(X_n))/\Lambda(U(X_n)) = \exp\left\{-Y_n \int_{1-n/Y_n}^1 G(zY_n) dz\right\};$$
 (6)

under appropriate assumptions on the behavior of G. For brevity, we write $Y_n \equiv \log U(X_n)$ throughout.

Corollary 1. If
$$p(s) \equiv 0$$
 and $\lim_{x\to\infty} xG(x) = 0$, then
$$\Lambda(e^{-n}U(X_n))/\Lambda(e^n) \stackrel{d}{\to} W$$
,

where W is uniformly distributed on [0,1].

Proof. Since xG(x) + 0, we have

$$\int_{\gamma_n-n}^{\gamma_n} G(y) dy = o \left\{-\log(1-n/\gamma_n)\right\}; \qquad (7)$$

combining Theorem 2, (6) and (7), it follows that, as $n+\infty$, $n/Y_n \stackrel{d}{\rightarrow} 1$. Hence, as $n+\infty$,

$$\Lambda(U(X_n))/\Lambda(e^n) = \exp\left\{\int_n^{\gamma_n} G(y) dy\right\}$$

$$= \exp\left\{o(\log[\gamma_n/n])\right\} \stackrel{d}{\leftarrow} 1,$$

and the result follows.

Corollary 2. If
$$p(s) \equiv 0$$
 and $\lim_{X\to\infty} xG(x) = a$, $0 < a < \infty$, then
$$n^{-1}\log U(X_n) - 1 \stackrel{d}{\to} W$$
, where $P[W \leq u] = \{u/(1+u)\}^a$.

Proof. Immediately, from (6), we have

$$\Lambda(e^{-n}U(X_n))/\Lambda(U(X_n)) \overset{a.s.}{\sim} \{1-n/Y_n\}^{a} ,$$

and the result now follows from Theorem 2.

Corollary 3. If $p(s) \equiv 0$, $\lim_{X\to\infty} xG(x) = \infty$, and G is regularly varying at infinity, then $nG(\log U(X_n)) \stackrel{d}{\to} W$, where W is a standard negative exponential random variable.

Proof. Here, from (6), we have

$$\Lambda(e^{-n}U(X_n))/\Lambda(U(X_n)) = \exp\left\{-Y_n\int_{1-n/Y_n}^1 G(zY_n) dz\right\};(8)$$

combining (8) with Theorem 2 and $\lim_{x\to\infty} xG(x) = \infty$, it follows that, as $n\to\infty$, $n/Y_n\to 0$. Hence, since G varies regularly,

$$\Lambda(e^{-n}U(X_n))/\Lambda(U(X_n)) \sim \exp\{-nG(Y_n)\}$$
.

and the result follows.

If in Corollary 3 G has a positive index Δ , then $0 < \Delta \le 1$ and the conclusion can be transformed to the form

$$a_n^{-1} \log U(X_n) \stackrel{d}{\leftarrow} W'$$

where W' has the extreme value distribution function $\exp(-x^{-\Delta})$ and $G(a_n) = n^{-1}$.

We now show that for any U the hypotheses of Corollaries 1-3 can be satisfied. Let A be a positive integer valued random variable, define I = [V(A)] and let b be the probability generating function of I. Since

$$V(A) - 1 \le I \le V(A) \tag{9}$$

and log U is SV at infinity, it follows that condition (2) is satis-

fied iff $E \log^+ A < \infty$. In [3,§3.1] several examples were given where $E \log^+ A = \infty$, and for each of these T(x) = P(A > x) is SV at infinity. We now suppose this to be always the case. It follows then, from Lemma 1 and (9), that $P(I > x) \sim T(U(x))$ ($x \rightarrow \infty$) and hence an Abelian theorem for power series yields

 $(1-b(s))/(1-s) = \sum s^{j}P(I>j) \sim (1-s)^{-1}T(U(1-s)) \quad (s+1).$ Letting $s = \exp(-1/V(e^{X}))$ and invoking Lemma 1 once again, we obtain $G(x) \sim T(e^{X}).$

Let $\log_1 x = \log x$ and $\log_k x = \log(\log_{k-1} x)$ (k=2,3,...) for all sufficiently large x. In [3] an example was given for which

$$T(x) \sim c \begin{bmatrix} r \\ \pi \\ k=1 \end{bmatrix} \log_{k} x]^{-1} \qquad (x+\infty)$$

where $r \ge 2$ and c is a certain constant. Using (10) it is obvious that $\int_0^\infty G(x) dx = \infty$ and that $xG(x) \to 0$ $(x \to \infty)$ and hence this example satisfies the conditions of Corollary 1.

Discrete distributions were also constructed in [3] for which

$$T(x) \sim a/\log x$$
 $(0 < a < \infty)$;

$$T(x) \sim c(\log x)^{-(\delta-1)}$$
 (0 < c < \infty, 1 < \delta < 2);

and

$$T(x) \sim (c/b)(\log_{r} x)^{-b}$$
 $(0 < b, c < \infty, r \ge 2).$

Using (10) we see that these examples satisfy the hypotheses of Corollaries 2 and 3.

Finally, we show that the neatest version of Theorem 2 that could be hoped for is in fact impossible.

Theorem 3. There is no sequence of constants (c_n) such that $c_n^{-1}U(X_n)$ has a limit in distribution which is neither defective nor degenerate at zero.

<u>Proof.</u> For any $0 < x_1 < x_2 < \infty$, let $p_n(x_1, x_2) = P[x_1 \le c_n^{-1}U(X_n) \le x_2]$. Then, since $\Lambda(e^{-n}U(\cdot))/\Lambda(U(\cdot))$ is continuous and strictly increasing, it follows also that

 $p_{n}(x_{1},x_{2}) = P[r_{n}(x_{1}) \leq \Lambda(e^{-n}U(X_{n}))/\Lambda(U(X_{n})) \leq r_{n}(x_{2})] ,$ where

 $0 < r_n(x) \equiv \Lambda(e^{-n}c_nx)/\Lambda(c_nx) < 1.$ If (c_n) is such that $c_n^{-1}U(X_n)$ is to converge in distribution, we must have $c_ne^{-n} \to \infty$ because of Theorem 1. Hence, since Λ is SV, we see that $r_n(x_2) = r_n(x_1)[1+o(1)]$ as $n\to\infty$. Choose any subsequence (n_k) such that $r_n(x_1) + r$ for some $r\in[0,1]$. Then, for any $\epsilon > 0$, the intervals $\left\{r_n(x_1), r_n(x_2)\right\}$ belong to $(r-\epsilon, r+\epsilon)$ for all k sufficiently large. It follows from Theorem 2 that $p_n(x_1, x_2) \to 0$, and hence that, if $c_n^{-1}U(X_n)$ converges in distribution, its limit puts no mass on $(0, \infty)$.

It is interesting to note the contrast between the cases p(x) > 0 and $p(x) \equiv 0$. In the former, the asymptotic behavior is dominated by the underlying Galton-Watson process, and the effect of immigration, apart from preventing extinction, is seen only in the distribution of the limit of $U(X_n)e^{-n}$: eventually, the contribution of the immigration process becomes negligible. However, when $p(x) \equiv 0$, the immigration distribution has such a broad tail that $U(X_n)e^{-n}$ is pushed off to infinity a.s. by the infinite sequence of occasional, but very large, inflows of immigrants. The character of Theorem 2 and its Corollaries, giving limits in distribution but not with probability one, reflects the nature of the immigration process rather than that of the Galton-Watson process. In particular, unlike the case

when p(x) > 0, the limiting distribution appearing in Theorem 2 is the same, whether or not the Galton-Watson process is regular or irregular.

REFERENCES

- [1] Hudson, I. L. and Seneta, E. (1977). The simple branching process with infinite mean. J. Appl. Prob. (to appear)
- [2] Pakes, A. G. (1976). Some limit theorems for a supercritical branching process allowing immigration. J. Appl. Prob., 13, 17-26.
- [3] (1977). Limit theorems for the simple branching process allowing immigration: A review and new results. I: The case of finite offspring mean. Tech. Report No. 128, Series 2, Dept. of Statistics, Princeton University.
- [4] Rényi, A. (1958). On mixing sequences of sets. Acta. Math. Acad. Sci. Hung., 9, 215-228.
- [5] Rényi, A. and Révész, P. (1958). On mixing sequences of random variables. <u>Acta. Math. Acad. Sci. Hung.</u>, 9, 389-393.
- [6] Schuh, H-J. and Barbour, A.D. (1977). Normalising constants for the branching process with infinite mean. <u>Adv. Appl.</u> <u>Prob.</u> (to appear)
- [7] Seneta, E. (1976). Regularly Varying Functions. Lecture notes in Mathematics, No. 508. Springer-Verlag, Berlin.

If $s = \infty$. When $s = \infty$ limit theorems are found for $(U(X_n))$ which

Sub i

Sum over b subj log(+)

DD | FORM 71 1473 EDITION OF 1 NOV 65 IS OBSOLETE

involve a slowly varying non-linear norming.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)
406 873 JOB